• 24/7

Quantum Mechanics Homework

В. И. Коган, В. М. Галицкий Problems in Quantum Mechanics

В. И. Коган, В. М. Галицкий Problems in Quantum Mechanics

The present book contains one hundred and sixty problems, most of them simple, in nonrelativistic quantum mechanics. Some of these problems were used previously by the authors in their courses at the Moscow Institute of Engineering and Physics. However, the majority were drawn up or selected in the course of work on the book. This book is designed for physics students who are studying quantum mechanics approximately at the level of D.I.Blokhintsev's book or Part II of "Theoretical Physics" by A.S.Kompaneyts. A number of problems is intended primarily for students who are beginning to specialize in theoretical physics and who are partially familiar with the contents of "Quantum Mechanics" by L.D.Landau and Ye.M.Lifshits. Some problems illustrate individual theoretical questions which have scarcely been considered in textbooks: sudden and adiabatic changes; Heisenberg representation of operators; probability relations in addition of momenta; isotopic spin; parity; and others. The authors have tried to use relatively elementary mathematical tools of quantum mechanics to facilitate use of the book by nontheoretical physicists. With a few exceptions, the authors have not included in this book problems which are considered in sufficient detail in the basic textbooks mentioned above and in the problem book on quantum mechanics written by V.G.Levich. Therefore, this book should be regarded chiefly as an auxiliary textbook in the study of the above books.

David Prutchi Exploring Quantum Physics through Hands-on Projects

David Prutchi Exploring Quantum Physics through Hands-on Projects

Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. Presented in near chronological order—from discoveries of the early twentieth century to new material on entanglement—this book includes question- and experiment-filled chapters on: Light as a Wave Light as Particles Atoms and Radioactivity The Principle of Quantum Physics Wave/Particle Duality The Uncertainty Principle Schrödinger (and his Zombie Cat) Entanglement From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field—how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for all who seek to explore it—from science enthusiasts and undergrad physics students to practicing physicists and engineers.

Omar Manasreh Introduction to Nanomaterials and Devices

Omar Manasreh Introduction to Nanomaterials and Devices

An invaluable introduction to nanomaterials and their applications Offering the unique approach of applying traditional physics concepts to explain new phenomena, Introduction to Nanomaterials and Devices provides readers with a solid foundation on the subject of quantum mechanics and introduces the basic concepts of nanomaterials and the devices fabricated from them. Discussion begins with the basis for understanding the basic properties of semiconductors and gradually evolves to cover quantum structures—including single, multiple, and quantum wells—and the properties of nanomaterial systems, such as quantum wires and dots. Written by a renowned specialist in the field, this book features: An introduction to the growth of bulk semiconductors, semiconductor thin films, and semiconductor nanomaterials Information on the application of quantum mechanics to nanomaterial structures and quantum transport Extensive coverage of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein stastistics An in-depth look at optical, electrical, and transport properties Coverage of electronic devices and optoelectronic devices Calculations of the energy levels in periodic potentials, quantum wells, and quantum dots Introduction to Nanomaterials and Devices provides essential groundwork for understanding the behavior and growth of nanomaterials and is a valuable resource for students and practitioners in a field full of possibilities for innovation and invention.


Warning: file_put_contents(/home/usrdan/doors-eng/buygoodessay.com/data/errors.txt): failed to open stream: Permission denied in /home/usrdan/doors-eng/buygoodessay.com/engine/profilers.php on line 108

Warning: file_put_contents(/home/usrdan/doors-eng/buygoodessay.com/data/profiler.txt): failed to open stream: Permission denied in /home/usrdan/doors-eng/buygoodessay.com/engine/profilers.php on line 147